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ABSTRACT 

As computing education makes its way into schools, there is still 
little research on how to assess the learning of algorithms and 
programming concepts as a central topic. Furthermore, in order 
to ensure valid instructional feedback, an important concern is 
the reliability and construct validity of an assessment model. 
Therefore, this work presents a large-scale evaluation of the 
CodeMaster rubric for the performance-based assessment of 
algorithms and programming concepts by analyzing software 
artifacts created by students as part of complex, open-ended 
learning activities. The assessment is automated through a web-
based tool that performs a static analysis of the source code of 
App Inventor projects. Based on 88,812 projects from the App 
Inventor Gallery, we statistically analyzed the reliability and 
construct validity of the rubric. Results indicate that the rubric 
can be regarded as reliable (Cronbach’s alpha α=0.84). With 
respect to construct validity, there also exists an indication of 
convergent validity based on the results of a correlation and 
factor analysis. This indicates that the rubric can be used for a 
valid assessment of algorithm and programming concepts of App 
Inventor programs as part of a comprehensive assessment 
completed by other assessment methods. The results can guide 
the improvement of assessment models, as well as support the 
decision on the application of the rubric in order to support 
computing education in K-12. 
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1. INTRODUCTION 

Computational Thinking (CT) is a competence that refers to 
the thought processes involved in creating algorithmic solutions 
that can be performed by a computer [1]. It is regarded as a key 
competence that students need to develop in order to succeed in 
a rapidly changing, digital society [1]. According to the CSTA 
Computer Science K-12 Framework [2], CT practices can be 
applied to many areas, however, computer science offers unique 
opportunities to develop CT. There is a strong relationship 
between CT practices and algorithms and programming concepts 
(Figure 1) that allows exploring this relationship by using the 
concepts present in any programming language [2]. 

 

Figure 1: Relationship between CT practices and 
algorithms and programming concepts [2] 
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All these algorithms and programming concepts, also known 
as algorithm and thinking skills, are strongly related to CT 
practices from the Computer Science K-12 Framework [2]. 

Teaching CT and algorithmic thinking has been a focus of 
worldwide efforts of computing education in K-12 [3][4]. Many 
of those initiatives focus on teaching programming that is not 
solely a basic part of computing, but also a key tool for 
supporting cognitive tasks involved in CT [3]. In order to 
introduce programming in K-12, typically visual block-based 
programming environments, such as Scratch, BYOB/Snap! or 
App Inventor are used [5]. Diverse instructional strategies are 
applied, yet, often in a constructivist context, a problem-based 
learning strategy is adopted posing programming activities as 
open-ended ill-structured problems [6]. These activities aim to 
stimulate the development of higher-order thinking 
competencies not prescribing a correct or best solution in 
advance and giving students more freedom to choose abstract 
concepts for creating a solution [7]. Examples are activities in 
which students create their own games or mobile applications to 
solve real-world problems [8]. 

Important for any learning process, assessment and grading 
can guide the students’ learning providing feedback to both the 
student and the teacher [9][10][11][12]. Yet, despite the many 
efforts to address CT assessment [3][13][14], there is currently 
no consensus on strategies to assess CT concepts [13][14][15] 
[16]. Due to the abstract nature of the construct being measured, 
the assessment of CT is particularly complex [17]. Different 
approaches and frameworks have been proposed [14], yet, for 
assessing complex, ill-structured activities as part of problem-
based learning, authentic assessments seem a more appropriate 
means than traditional assessments [18][19]. 

Authentic assessment, specifically performance-based 
assessment, measures competencies based on artifacts created by 
students as a result of open-ended tasks, such as programming a 
software artifact [20]. By defining outcome-oriented assessment 
indicators it allows to assess the product of the students’ 
performance with respect to the learning objectives that specify 
what the student should learn, understand or be able to do as a 
result of an instructional unit [21]. In the context of the 
assessment of CT, such outcome-oriented indicators assume that 
measurable attributes can be extracted from the software artifact 
created by the student. Performance levels for the achievement 
of learning outcomes defining assessment criteria and indicators 
are typically defined as rubrics [22]. Rubrics, used for assessing 
programming activities, map a score to the ability to develop a 
software artifact indirectly inferring the achievement of CT 
competencies [15][23][24]. These scores can also be converted 
into grades. Examples of rubrics that assess some CT aspects 
include Dr. Scratch [25], Ninja Code Village [26], Grover et al. 
rubric [27], Basu rubric [28] and the mobile CT rubric [24]. 

In order to support their application in practice, some of 
these rubrics have been automatized, such as Dr. Scratch [25] 
and Ninja Code Village [26]. These tools measure CT by 
performing a static code analysis by counting the kind and the 

number of command blocks used with respect to algorithms and 
programming concepts, such as logic, abstraction, control flow, 
etc., and thus, quantifying CT practices. Yet, most of these 
rubrics and tools for assessing CT focus on Scratch [14]. 

Research on the assessment of code created with other 
popular block-based programming environments including App 
Inventor is still scarce. Sherman and Martin propose a mobile CT 
rubric aiming at the assessment of mobile CT based on the 
analysis of App Inventor programs [24][29]. This rubric has been 
designed to assess growth in sophistication of mobile CT 
patterns in App Inventor programs including 6 criteria on CT in 
general and 8 specific criteria on mobile CT considering that 
mobile platforms provide situatedness of computing. An 
evaluation of the rubric based on the analysis of 45 apps from 18 
students in higher education illustrates the efficacy of the rubric 
to demonstrate varying degrees of mobile CT skills [24]. 
However, the rubric has been developed for App Inventor 
Classic, retired in 2015 and being replaced by App Inventor 2 
including new features (such as maps, media, etc.) not covered 
by that rubric. Grover et al. [27] propose a rubric to assess 
Scratch and App Inventor projects with respect to 5 main 
dimensions: general factors, mechanics of design, user 
experience, basic coding & constructs, and advanced coding 
constructs. They used the rubric to assess students’ projects from 
6th to 8th grade and drawn conclusions on the sequencing of 
some concepts in K-12 computer science trends, as well as a 
comparison between Scratch and App Inventor.  Another 
multidimensional rubric for analyzing open-ended block-based 
programming projects that integrates the assessment of front-
end project design and back-end sophistication of the use of 
coding constructs has been presented by Basu [28]. The rubric 
was also used to assess students’ projects from 6th to 8th grade 
in order to give computer science educators an overview of what 
students need to have more support and what can be done to 
leverage programming environments to provide this support. 
Yet, none of these rubrics were automated and analyzed 
regarding their reliability and validity. 

Thus, based on these existing CT rubrics and taking into 
consideration new features of App Inventor, we propose an 
automated performance-based assessment rubric and grader 
CodeMaster. It enables an analysis of the code of App Inventor 
programs supported by a free web-based tool providing feedback 
to students and teachers in the form of a CT score on 
programming projects. The model has been developed based on a 
systematic mapping study [14] following an instructional design 
process [30] and the procedure for rubric definition proposed by 
Goodrich [31]. A preliminary evaluation conducting a user test 
with K-12 teachers and students indicated that it can be a useful, 
usable and efficient tool to support the assessment of App 
Inventor projects [32]. 

Yet, a question that remains is if the CodeMaster rubric 
allows assessing CT in a reliable and valid manner. Therefore, 
we conduct an extensive evaluation of the CodeMaster rubric 
with respect to its reliability and construct validity, being 
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fundamental issues with respect to measurement instruments 
such as rubrics [33]. 

2. CODEMASTER RUBRIC AND TOOL 

CodeMaster is a model for the assessment of algorithms and 
programming concepts related to CT practices and mobile 
concepts. It is designed to be applicable in the context of 
complex and ill-structured programming tasks without a single 
correct solution, e.g., students developing their own apps to 
solve a community problem. CodeMaster adopts an authentic 
assessment strategy. It measures the students’ performance 
based on the created software artifacts as outcomes of 
programming tasks. It is based on a rubric that measures 
indicators of the learning outcome in order to evaluate whether 
the software artifact produced by students demonstrates that 
they have learned algorithms and programming concepts (Table 
1). The items were decomposed based on learning objectives 
from levels 1B to 3A from the CSTA Computer Science K-12 
Framework, which are designed to assess students’ projects from 
grades 3-10 [2]. 

Differences with respect to the Mobile CT rubric [24][29] are 

due to new features in App Inventor 2 (such as maps and other 
components) that were inexistent when the Mobile CT rubric 
was created. No criterion on parallelism is included, as it is not 
applicable to App Inventor programs [34]. Focusing exclusively 
on assessment based on the created software artifacts, criteria 
related to the development process and CT perspectives, as 
proposed by Brennan and Resnick [15], are also not considered. 
Aspects related to subjective criteria are also not covered by the 
rubric, as it is difficult to automatize such project characteristics 
that are typically assessed by a human, such as novelty [28]. 

For each performance level, observable behaviors are 
described on an ordinal scale, ranging from “criterion is not (or 
minimally) present” to an advanced usage of the criterion based 
on the sources appointed in Table 1. As a result, a score is 
assigned for each criterion, referred to as item. A total score is 
calculated through the sum of the partial scores ranging from [0, 
40]. 

The assessment and grading of App Inventor projects based 
on the model are automated through a free web-based system 
available on http://apps.computacaonaescola.ufsc.br:8080/. 
Students can use the tool throughout the learning process in 

Table 1: CodeMaster rubric for assessing algorithms and programming based on the analysis of App Inventor projects 

CT Sub-
dimension 

Criterion  Performance Level   Source 
Reference 0 1 2 3 

A
lg

o
ri

th
m

s 
an

d 
P

ro
gr

am
m

in
g 

co
n

ce
p

ts
 

1. Operators No operator blocks are used. Arithmetic operator blocks 
are used. 

Relational operator blocks are 
used. 

Boolean operator blocks are 
used. 

[15][27] 

2. Variables No use of variables. Modification or use of 
predefined variables. 

Creation and operation with 
variables. 

- [2]:1B-AP-09 

3. Strings No use of strings. Use of creating string block 
to change design elements 
texts. 

Creation and operation with 
strings. 

- [2]:1B-AP-09 

4. Naming Few or no names are changed 
from their defaults. 

10 to 25% of the names are 
changed from their defaults. 

26 to 75% of the names are 
changed from their defaults. 

More than 75% of the names 
are changed from their 
defaults. 

[2]:2-AP-11 

5. Lists No lists are used. One single-dimensional list 
is used. 

More than one single-
dimensional list is used. 

Lists of tuples are used. [2]:3A-AP-14 

6. Data persistence Data are stored only in 
variables or UI component 
properties, and do not persist 
when app is closed. 

Data is stored in files. Local database is used. Web database is used. [24][29] 

7. Events No type of event handlers is 
used. 

One type of event handlers 
is used. 

Two or three types of event 
handlers are used. 

More than three types of 
event handlers are used. 

[2: 1B-AP-10 

8. Loops No use of loops. Simple loops are used. ‘For each’ loops with simple 
variables are used. 

’For each’ loops with list 
items are used. 

[2]:1B-AP-10 
[2]:2-AP-12 

9. Conditional No use of conditionals. Uses ‘if’ structure. Uses one ‘if then else’ structure. Uses more than one ‘if then 
else’ structure. 

[2]:1B-AP-10 
[2]:2-AP-12 

10. Synchronization No use of timer for 
synchronization. 

Use of timer for 
synchronization. 

- - [15] 

11. Procedural 
Abstraction 

No use of procedures. One procedure is defined 
and called. 

More than one procedure 
defined. 

There are procedures for code 
organization and re-use. 

[2]:1B-AP-11 
[2]:2-AP-13 

M
ob

il
e 

co
n

ce
p

ts
 

12. Sensors No use of sensors. One type of sensor is used. Two types of sensors are used. More than two types of 
sensors are used. 

[24][29] 

13. Drawing and 
Animation 

No use of drawing and 
animation components. 

Uses canvas component. Uses ball component. Uses image sprite component. [24][29] 

14. Maps No use of maps. Use of a map block Use of map markers blocks. - [24][29] 

15. Screens Single screen with visual 
components, whose state is 
not changed 
programmatically. 

Single screen with visual 
components, whose state is 
changed programmatically. 

Three screens with visual 
components of which at least 
one is programmed to change 
state. 

Four screens with visual 
components of which at least 
two are programmed to 
change state. 

[24][29] 
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order to obtain immediate feedback on their projects (Figure 2).  
In addition, teachers can use the tool in order to assess and grade 
projects of an entire class as part of a comprehensive assessment 
as suggested by Brennan and Resnick [15] and Grover and Pea 
[35]. 

 

Figure 2: CodeMaster grade for an App Inventor project 

3. RESEARCH METHOD 

Following the Goal Question Metric (GQM) approach [36], 
the objective of this study is to analyze the CodeMaster rubric in 
order to evaluate its reliability and construct validity for the 
assessment of CT competencies related to algorithms and 
programming concepts from the researchers’ perspective in the 
context of K-12 computing education. Based on this objective, 
the following analysis questions are derived: 

Reliability 

AQ1: Is there evidence of internal consistency of the 
CodeMaster rubric? 

Construct Validity 

AQ2: Is there evidence of convergent validity of the 
CodeMaster rubric? 

AQ3: How do underlying factors influence the responses on 
the items of the CodeMaster rubric? 

Data collection. In order to optimize the sample size, we 
downloaded the publicly available and accessible apps from the 
App Inventor Gallery in June 2018. As a result, we obtained the 
source-code from 88,864 App Inventor apps. We analyzed these 
projects using the CodeMaster tool. Out of the 88,864 
downloaded projects, 88,812 were successfully analyzed. 52 
projects failed to be analyzed due to technical difficulties. The 
collected data were pooled in a single sample in order to validate 
the CodeMaster rubric (rather than a specific app). 

Data analysis. In order to evaluate the reliability and 
construct validity of the CodeMaster rubric, we used different 
statistical methods. As reliability refers to the degree of 
consistency or stability of the instrument criteria on the same 
quality factor, we estimate internal consistency calculating 
Cronbach's alpha coefficient [37] in order to evaluate the 
consistency of results across criteria within a measurement 
instrument. Construct validity is defined as the instrument’s 
ability to actually measure what it purports to measure, 

involving convergent validity obtained through the degree of 
correlation between the instrument criteria [33]. We also 
performed a factor analysis in order to determinate how many 
factors underlie the set of items of the CodeMaster rubric, 
conducting the analysis proposed by Brown [38]. This allows 
identifying the amount to which each item is correlated with 
each subdimension through the factor loading. 

4. ANALYSIS 

4.1 Is there evidence of internal consistency of 
the CodeMaster rubric? 

We analyzed reliability by measuring the internal consistency 
of the CodeMaster rubric through Cronbach's alpha coefficient 
[37]. Cronbach's alpha coefficient measures indirectly to what 
extent a set of items measures a single quality factor. Thus, in 
our case, whether the CodeMaster rubric measures the same 
factor: the assessment of CT competencies related to algorithms 
and programming concepts. Typically, values ranging from 0.70 
to 0.95 are considered acceptable indicating internal consistency 
(values between 0.7 < α ≤ 0.8 are acceptable, 0.8 < α ≤ 0.9 are 
good, and α ≥ 0.9 are excellent) [39]. Analyzing the 15 items of 
the CodeMaster rubric using the 88,812 App Inventor projects, 
we obtained a satisfactory value of Cronbach's alpha (α=0.84). 

4.1  Is there evidence of convergent validity of 
the CodeMaster rubric? 

In order to demonstrate convergent validity, we expect the 
items of the rubric to have a medium or high correlation with all 
other items [39]. We analyzed this question using the method of 
corrected item-total correlation that compares one item to every 
other one of the rubric. Following Cohen [40], a correlation is 
considered satisfactory if the correlation coefficient is greater 
than 0.29. We also analyze the value of Cronbach's alpha if an 
item was deleted, expecting no substantial increase [39]. The 
values of the item-total correlation and the values of Cronbach’s 
alpha [37] deleting the respective item are presented in Table 2. 

Table 2. Results of the analysis of the item-total 
correlation with 88,812 App Inventor projects 

CRITERION (OR ITEM) ITEM-TOTAL CORRELATION CRONBACH ALPHA 
1. Operators 0.694 0.82 
2. Variables 0.686 0.82 
3. Strings 0.583 0.83 
4. Naming 0.585 0.82 
5. Lists 0.364 0.84 
6. Data persistence 0.325 0.84 
7. Events 0.596 0.82 
8. Loops 0.286 0.84 
9. Conditional 0.618 0.82 
10. Synchronization 0.562 0.83 
11. Procedural Abstraction 0.548 0.83 
12. Sensors 0.448 0.84 
13. Drawing and Animation 0.376 0.84 
14. Maps 0.015 0.85 
15. Screens 0.324 0.84 
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Most values of the item-total correlations are above 0.29, 
demonstrating an acceptable internal consistency. The degree of 
correlation between items indicates that the items measure the 
same dimension, thus, demonstrating convergent and 
discriminant validity. 

Only item 14 (Maps) demonstrates a low correlation, which 
can be explained by the fact that maps are a resource that has 
been recently added to App Inventor in 2018, and, thus, may be 
underrepresented in our dataset. Item 8 (Loops) shows a 
correlation of 0.28, very close to the expected minimum value 
(0.29). This may be due to the fact that loop commands are not 
widely used in App Inventor programs [34][41]. All other items 
show a decrease in Cronbach's alpha value if removed and 
demonstrate sufficient item-total correlation, indicating the 
validity of the rubric. 

4.2  How do underlying factors influence the 
responses on the items of the CodeMaster 
rubric? 

We performed a factor analysis in order to identify the 
number of underlying factors that influence the items of the 
CodeMaster rubric. We assume that the rubric is influenced by 
two factors: algorithms and programming concepts and mobile 
concepts, both related to CT. 

In order to check the possibility to perform a factor analysis, 
we used the Kaiser-Meyer-Olkin (KMO) index [38]. It measures 
the sampling adequacy with values between 0 and 1. A value 
near 1.0 supports a factor analysis and anything less than 0.5 is 
not likely suitable for useful factor analysis [38]. Analyzing the 
items of the CodeMaster rubric, we obtained a KMO index of 
0.83, demonstrating that factor analysis is suitable in this case. 

The number of factors retained is decided by applying factor 
analysis [42]. We used parallel analysis, a method for 
determining the number of components or factors to retain in 
which factors with eigenvalues greater than 1 may be significant. 
Conducting the parallel analysis, results show that there is one 
preponderant factor, however, by showing 3 eigenvalues above 
the red line, the scree plot suggests that there may be 3 
underlying factors (Figure 3). 

 

Figure 3: Parallel analysis scree plots of the CodeMaster 
rubric 

Thus, in order to decide which items are loaded in each 
factor, we use the Oblimin rotation method, in which the factors 
are allowed to be correlated [43]. Table 3 shows the factor 
loadings of the items for each of the 3 retained factors. Based on 
Comrey and Lee [44], we use more stringent cut-offs from 0.32 
(poor), 0.45 (acceptable), 0.55 (good), 0.63 (very good), or 0.71 
(excellent). Thus, good factor loadings (above 0.55) are marked in 
bold in Table 3. 

Table 3. Factor loadings for 3 factors 

CRITERION (OR ITEM) FACTOR 1 FACTOR 2 FACTOR 3 
1. Operators 0,325 0,074 0,795 
2. Variables 0,453 0,337 0,763 
3. Strings -0,028 -0,100 0,801 
4. Naming 0,198 0,174 0,659 
5. Lists -0,070 0,123 0,690 
6. Data persistence -0,093 -0,156 0,786 
7. Events 0,178 -0,157 0,868 
8. Loops -0,004 0,209 0,768 
9. Conditional 0,150 0,048 0,807 
10. Synchronization 0,710 -0,336 0,616 
11. Procedural Abstraction 0,406 0,241 0,779 
12. Sensors 0,713 -0,432 0,453 
13. Drawing and Animation 0,752 0,298 0,351 
14. Maps -0,123 -0,389 0,403 
15. Screens -0,158 -0,339 0,702 

Analyzing the factor loadings (Table 3), factor 1 seems to be 
more related to mobile concepts from App Inventor, grouping 
item 12 (Sensors) and item 13 (Drawing and Animation) in this 
factor. In addition, item 10 (Synchronization) also presents a 
high factor loading in this first factor. However, it also has a 
high factor loading in the third factor.  

Factor 2 presents poor factor loadings for all items. No item 
demonstrates a factor loading above 0.45, indicating that there is 
no such factor. 

Factor 3 is more related to algorithms and programming 
concepts related to CT practices as defined by the CSTA [2]. 
Most of the items of the CodeMaster rubric have a high factor 
loading in this third factor. Item 14 (Maps), semantically more 
related to the first factor, presents its largest factor loading in the 
third factor. However, as this item is related to a resource added 
to App Inventor in 2018, it may be underrepresented in our 
dataset in which only 0,08% projects (72 out of 88,812 projects) 
use this feature, this may have generated noise in the 
calculation. As a result, the factor loadings confirm that the 
model has only two subdimensions as originally proposed in 
table 1 (algorithms and programming concepts and mobile 
concepts). 

Aiming ultimately at assessing CT, it is important to 
determine how much the items are loading into one single 
factor. Table 4 shows the factor loadings of the items with 
respect to one single factor. Most of the items present value 
above the threshold of 0.55. Only item 14 (Maps) has a low factor 
loading, which again can be explained by the possibility of this 
item being underrepresented in our dataset. 
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Table 4. Factor loadings for one single factor 

CRITERIA (OR ITEM) FACTOR LOADING 
1. Operators 0.875 
2. Variables 0.868 
3. Strings 0.697 
4. Naming 0.703 
5. Lists 0.590 
6. Data persistence 0.679 
7. Events 0.860 
8. Loops 0.721 
9. Conditional 0.807 
10. Synchronization 0.855 
11. Procedural Abstraction 0.882 
12. Sensors 0.669 
13. Drawing and Animation 0.614 
14. Maps 0.262 
15. Screens 0.574 

5. IMPLICATIONS AND LIMITATIONS 

The obtained results, in general, indicate good reliability and 
construct validity of the CodeMaster rubric for the assessment of 
CT competencies related to algorithms and programming 
concepts and mobile concepts. Unsatisfactory results regarding 
item 14 (Maps) may be due to its underrepresentation in the 
dataset. All other items presented good results with respect to 
both, reliability and validity. 

In addition, the items also present consistent results related to 
the underlying factors of the rubric, and the factor analysis 
shows that the items have high factor loadings in two 
subdimensions, as originally proposed. However, item 15 
(Screens) demonstrated a bigger factor loading on algorithms 
and programming concepts instead of mobile concepts. This 
could be due to the definition of this item, which is related to 
“the app state changing programmatically” as presented in Table 
1. Thus, for this change happen, it is required that the app 
contains many algorithms and programming concepts in order 
to provide screen change to the user. 

One item presents high factor loading in both factors. Item 10 
(Synchronization) seems to be related to algorithms and 
programming concepts as defined by the CSTA [2] as well as to 
mobile concepts from App Inventor. As a result, we can conclude 
an assessment model composed of two sub-dimensions as shown 
in Figure 4. 

 

Figure 4: CodeMaster rubric items grouped based on the 
results of the factor analysis 

In general, the results of the analysis show that the 
CodeMaster rubric represents a reliable instrument and, with the 
exception of the Maps item, also demonstrates a good 
correlation. This indicates that the rubric can be used for a valid 
assessment of algorithms and programming concepts based on a 
code analysis of App Inventor programs. Yet, it is important to 
point out that the rubric represents only one alternative for 
measuring these dimensions of CT, and a more comprehensive 
assessment should be completed by other assessment methods, 
such as interviews, peer reviews, presentations, etc. as suggested 
by Brennan and Resnick [15] and Grover and Pea [35]. 

Threats to validity. In order to minimize the impact on our 
research, we identified potential threats and applied mitigation 
strategies. In order to mitigate threats related to the study 
design, we adopted a systematic methodology following the 
GQM approach [36]. Another issue refers to the quality of data 
pooled into a single sample considering the standardization of 
the data. As our study is limited to assessments using the 
CodeMaster tool, this risk is minimized as all analyses were 
performed in an automated way using the same rubric. Another 
risk is the pooling of data from various contexts. The apps of the 
dataset come from diverse contexts from the App Inventor 
community worldwide and no further information on the 
background of the creators is available. However, as the 
objective is to analyze the validity of the rubric in a context-
independent way, this is not considered an issue here. Another 
threat to external validity is associated with the sample size and 
diversity of the data used. Our analysis is based on projects 
collected from the App Inventor Gallery, involving a sample of 
88,812 apps from the App Inventor community worldwide. This 
is considered a satisfactory sample size that allows the 
generation of significant results. Another issue refers to which 
the extent the data and analysis are influenced by the 
researchers. In order to mitigate this threat, we adopted a 
systematic methodology, defining clearly the study objective, the 
data collection, and statistical analysis. We also carefully selected 
the statistical methods following the approach proposed by 
DeVellis [39] for the construction of measurement scales in 
alignment with procedures for the analysis of internal 
consistency and construct validity of measurement instruments 
[45]. 

6. CONCLUSION 

In general, the results of this large-scale evaluation show that 
the CodeMaster rubric represents an instrument with acceptable 
reliability and validity that can be used for the assessment of 
algorithms and programming concepts of App Inventor 
applications as part of computing education in schools. 
Supported through the online tool CodeMaster, it further 
provides automated support that helps to ensure consistency and 
accuracy of assessment results as well as to eliminate bias. 
Furthermore, it can also reduce the teachers' workload and 
leaving them free to spend more time on other activities with 
students as well as to conduct complementary assessments on 
factors that are not easily automated, such as creativity.  
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