
A Large-scale Evaluation of a Rubric for the Automatic
Assessment of Algorithms and Programming Concepts

Nathalia da Cruz Alves
 Federal University of Santa Catarina

 Florianópolis/Brazil
nathalia.alves@posgrad.ufsc.br

Jean Carlo Rossa Hauck
 Federal University of Santa Catarina

 Florianópolis/Brazil
jean.hauck@ufsc.br

Christiane Gresse von Wangenheim
 Federal University of Santa Catarina

 Florianópolis/Brazil
 c.wangenheim@ufsc.br

Adriano Ferreti Borgatto
 Federal University of Santa Catarina

 Florianópolis/Brazil
adriano.borgatto@ufsc.br

ABSTRACT

As computing education makes its way into schools, there is still
little research on how to assess the learning of algorithms and
programming concepts as a central topic. Furthermore, in order
to ensure valid instructional feedback, an important concern is
the reliability and construct validity of an assessment model.
Therefore, this work presents a large-scale evaluation of the
CodeMaster rubric for the performance-based assessment of
algorithms and programming concepts by analyzing software
artifacts created by students as part of complex, open-ended
learning activities. The assessment is automated through a web-
based tool that performs a static analysis of the source code of
App Inventor projects. Based on 88,812 projects from the App
Inventor Gallery, we statistically analyzed the reliability and
construct validity of the rubric. Results indicate that the rubric
can be regarded as reliable (Cronbach’s alpha α=0.84). With
respect to construct validity, there also exists an indication of
convergent validity based on the results of a correlation and
factor analysis. This indicates that the rubric can be used for a
valid assessment of algorithm and programming concepts of App
Inventor programs as part of a comprehensive assessment
completed by other assessment methods. The results can guide
the improvement of assessment models, as well as support the
decision on the application of the rubric in order to support
computing education in K-12.

CCS CONCEPTS
• Social and professional topics~Computational thinking • Social
and professional topics~Student assessment • Social and
professional topics~K-12 education

KEYWORDS
Automated grading; Algorithms and programming;
Performance-based assessment; Rubric

ACM Reference format:

Nathalia da C. Alves, Christiane G. von Wangenheim, Jean C. R. Hauck,
and Adriano F. Borgatto. 2020. A Large-scale Evaluation of a Rubric for
the Automatic Assessment of Algorithms and Programming Concepts. In
Proceedings of the 51st ACM Technical Symposium on Computer Science
Education (SIGCSE’20), March 11-14, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.3366840

1. INTRODUCTION

Computational Thinking (CT) is a competence that refers to
the thought processes involved in creating algorithmic solutions
that can be performed by a computer [1]. It is regarded as a key
competence that students need to develop in order to succeed in
a rapidly changing, digital society [1]. According to the CSTA
Computer Science K-12 Framework [2], CT practices can be
applied to many areas, however, computer science offers unique
opportunities to develop CT. There is a strong relationship
between CT practices and algorithms and programming concepts
(Figure 1) that allows exploring this relationship by using the
concepts present in any programming language [2].

Figure 1: Relationship between CT practices and
algorithms and programming concepts [2]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE'20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6793-6/20/03 $15.00
https://doi.org/10.1145/3328778.3366840

Paper Session: Rubrics and Evaluation SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

556

https://doi.org/10.1145/3328778.3366840

All these algorithms and programming concepts, also known
as algorithm and thinking skills, are strongly related to CT
practices from the Computer Science K-12 Framework [2].

Teaching CT and algorithmic thinking has been a focus of
worldwide efforts of computing education in K-12 [3][4]. Many
of those initiatives focus on teaching programming that is not
solely a basic part of computing, but also a key tool for
supporting cognitive tasks involved in CT [3]. In order to
introduce programming in K-12, typically visual block-based
programming environments, such as Scratch, BYOB/Snap! or
App Inventor are used [5]. Diverse instructional strategies are
applied, yet, often in a constructivist context, a problem-based
learning strategy is adopted posing programming activities as
open-ended ill-structured problems [6]. These activities aim to
stimulate the development of higher-order thinking
competencies not prescribing a correct or best solution in
advance and giving students more freedom to choose abstract
concepts for creating a solution [7]. Examples are activities in
which students create their own games or mobile applications to
solve real-world problems [8].

Important for any learning process, assessment and grading
can guide the students’ learning providing feedback to both the
student and the teacher [9][10][11][12]. Yet, despite the many
efforts to address CT assessment [3][13][14], there is currently
no consensus on strategies to assess CT concepts [13][14][15]
[16]. Due to the abstract nature of the construct being measured,
the assessment of CT is particularly complex [17]. Different
approaches and frameworks have been proposed [14], yet, for
assessing complex, ill-structured activities as part of problem-
based learning, authentic assessments seem a more appropriate
means than traditional assessments [18][19].

Authentic assessment, specifically performance-based
assessment, measures competencies based on artifacts created by
students as a result of open-ended tasks, such as programming a
software artifact [20]. By defining outcome-oriented assessment
indicators it allows to assess the product of the students’
performance with respect to the learning objectives that specify
what the student should learn, understand or be able to do as a
result of an instructional unit [21]. In the context of the
assessment of CT, such outcome-oriented indicators assume that
measurable attributes can be extracted from the software artifact
created by the student. Performance levels for the achievement
of learning outcomes defining assessment criteria and indicators
are typically defined as rubrics [22]. Rubrics, used for assessing
programming activities, map a score to the ability to develop a
software artifact indirectly inferring the achievement of CT
competencies [15][23][24]. These scores can also be converted
into grades. Examples of rubrics that assess some CT aspects
include Dr. Scratch [25], Ninja Code Village [26], Grover et al.
rubric [27], Basu rubric [28] and the mobile CT rubric [24].

In order to support their application in practice, some of
these rubrics have been automatized, such as Dr. Scratch [25]
and Ninja Code Village [26]. These tools measure CT by
performing a static code analysis by counting the kind and the

number of command blocks used with respect to algorithms and
programming concepts, such as logic, abstraction, control flow,
etc., and thus, quantifying CT practices. Yet, most of these
rubrics and tools for assessing CT focus on Scratch [14].

Research on the assessment of code created with other
popular block-based programming environments including App
Inventor is still scarce. Sherman and Martin propose a mobile CT
rubric aiming at the assessment of mobile CT based on the
analysis of App Inventor programs [24][29]. This rubric has been
designed to assess growth in sophistication of mobile CT
patterns in App Inventor programs including 6 criteria on CT in
general and 8 specific criteria on mobile CT considering that
mobile platforms provide situatedness of computing. An
evaluation of the rubric based on the analysis of 45 apps from 18
students in higher education illustrates the efficacy of the rubric
to demonstrate varying degrees of mobile CT skills [24].
However, the rubric has been developed for App Inventor
Classic, retired in 2015 and being replaced by App Inventor 2
including new features (such as maps, media, etc.) not covered
by that rubric. Grover et al. [27] propose a rubric to assess
Scratch and App Inventor projects with respect to 5 main
dimensions: general factors, mechanics of design, user
experience, basic coding & constructs, and advanced coding
constructs. They used the rubric to assess students’ projects from
6th to 8th grade and drawn conclusions on the sequencing of
some concepts in K-12 computer science trends, as well as a
comparison between Scratch and App Inventor. Another
multidimensional rubric for analyzing open-ended block-based
programming projects that integrates the assessment of front-
end project design and back-end sophistication of the use of
coding constructs has been presented by Basu [28]. The rubric
was also used to assess students’ projects from 6th to 8th grade
in order to give computer science educators an overview of what
students need to have more support and what can be done to
leverage programming environments to provide this support.
Yet, none of these rubrics were automated and analyzed
regarding their reliability and validity.

Thus, based on these existing CT rubrics and taking into
consideration new features of App Inventor, we propose an
automated performance-based assessment rubric and grader
CodeMaster. It enables an analysis of the code of App Inventor
programs supported by a free web-based tool providing feedback
to students and teachers in the form of a CT score on
programming projects. The model has been developed based on a
systematic mapping study [14] following an instructional design
process [30] and the procedure for rubric definition proposed by
Goodrich [31]. A preliminary evaluation conducting a user test
with K-12 teachers and students indicated that it can be a useful,
usable and efficient tool to support the assessment of App
Inventor projects [32].

Yet, a question that remains is if the CodeMaster rubric
allows assessing CT in a reliable and valid manner. Therefore,
we conduct an extensive evaluation of the CodeMaster rubric
with respect to its reliability and construct validity, being

Paper Session: Rubrics and Evaluation SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

557

fundamental issues with respect to measurement instruments
such as rubrics [33].

2. CODEMASTER RUBRIC AND TOOL

CodeMaster is a model for the assessment of algorithms and
programming concepts related to CT practices and mobile
concepts. It is designed to be applicable in the context of
complex and ill-structured programming tasks without a single
correct solution, e.g., students developing their own apps to
solve a community problem. CodeMaster adopts an authentic
assessment strategy. It measures the students’ performance
based on the created software artifacts as outcomes of
programming tasks. It is based on a rubric that measures
indicators of the learning outcome in order to evaluate whether
the software artifact produced by students demonstrates that
they have learned algorithms and programming concepts (Table
1). The items were decomposed based on learning objectives
from levels 1B to 3A from the CSTA Computer Science K-12
Framework, which are designed to assess students’ projects from
grades 3-10 [2].

Differences with respect to the Mobile CT rubric [24][29] are

due to new features in App Inventor 2 (such as maps and other
components) that were inexistent when the Mobile CT rubric
was created. No criterion on parallelism is included, as it is not
applicable to App Inventor programs [34]. Focusing exclusively
on assessment based on the created software artifacts, criteria
related to the development process and CT perspectives, as
proposed by Brennan and Resnick [15], are also not considered.
Aspects related to subjective criteria are also not covered by the
rubric, as it is difficult to automatize such project characteristics
that are typically assessed by a human, such as novelty [28].

For each performance level, observable behaviors are
described on an ordinal scale, ranging from “criterion is not (or
minimally) present” to an advanced usage of the criterion based
on the sources appointed in Table 1. As a result, a score is
assigned for each criterion, referred to as item. A total score is
calculated through the sum of the partial scores ranging from [0,
40].

The assessment and grading of App Inventor projects based
on the model are automated through a free web-based system
available on http://apps.computacaonaescola.ufsc.br:8080/.
Students can use the tool throughout the learning process in

Table 1: CodeMaster rubric for assessing algorithms and programming based on the analysis of App Inventor projects

CT Sub-
dimension

Criterion Performance Level Source
Reference 0 1 2 3

A
lg

o
ri

th
m

s
an

d
P

ro
gr

am
m

in
g

co
n

ce
p

ts

1. Operators No operator blocks are used. Arithmetic operator blocks
are used.

Relational operator blocks are
used.

Boolean operator blocks are
used.

[15][27]

2. Variables No use of variables. Modification or use of
predefined variables.

Creation and operation with
variables.

- [2]:1B-AP-09

3. Strings No use of strings. Use of creating string block
to change design elements
texts.

Creation and operation with
strings.

- [2]:1B-AP-09

4. Naming Few or no names are changed
from their defaults.

10 to 25% of the names are
changed from their defaults.

26 to 75% of the names are
changed from their defaults.

More than 75% of the names
are changed from their
defaults.

[2]:2-AP-11

5. Lists No lists are used. One single-dimensional list
is used.

More than one single-
dimensional list is used.

Lists of tuples are used. [2]:3A-AP-14

6. Data persistence Data are stored only in
variables or UI component
properties, and do not persist
when app is closed.

Data is stored in files. Local database is used. Web database is used. [24][29]

7. Events No type of event handlers is
used.

One type of event handlers
is used.

Two or three types of event
handlers are used.

More than three types of
event handlers are used.

[2: 1B-AP-10

8. Loops No use of loops. Simple loops are used. ‘For each’ loops with simple
variables are used.

’For each’ loops with list
items are used.

[2]:1B-AP-10
[2]:2-AP-12

9. Conditional No use of conditionals. Uses ‘if’ structure. Uses one ‘if then else’ structure. Uses more than one ‘if then
else’ structure.

[2]:1B-AP-10
[2]:2-AP-12

10. Synchronization No use of timer for
synchronization.

Use of timer for
synchronization.

- - [15]

11. Procedural
Abstraction

No use of procedures. One procedure is defined
and called.

More than one procedure
defined.

There are procedures for code
organization and re-use.

[2]:1B-AP-11
[2]:2-AP-13

M
ob

il
e

co
n

ce
p

ts

12. Sensors No use of sensors. One type of sensor is used. Two types of sensors are used. More than two types of
sensors are used.

[24][29]

13. Drawing and
Animation

No use of drawing and
animation components.

Uses canvas component. Uses ball component. Uses image sprite component. [24][29]

14. Maps No use of maps. Use of a map block Use of map markers blocks. - [24][29]

15. Screens Single screen with visual
components, whose state is
not changed
programmatically.

Single screen with visual
components, whose state is
changed programmatically.

Three screens with visual
components of which at least
one is programmed to change
state.

Four screens with visual
components of which at least
two are programmed to
change state.

[24][29]

Paper Session: Rubrics and Evaluation SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

558

order to obtain immediate feedback on their projects (Figure 2).
In addition, teachers can use the tool in order to assess and grade
projects of an entire class as part of a comprehensive assessment
as suggested by Brennan and Resnick [15] and Grover and Pea
[35].

Figure 2: CodeMaster grade for an App Inventor project

3. RESEARCH METHOD

Following the Goal Question Metric (GQM) approach [36],
the objective of this study is to analyze the CodeMaster rubric in
order to evaluate its reliability and construct validity for the
assessment of CT competencies related to algorithms and
programming concepts from the researchers’ perspective in the
context of K-12 computing education. Based on this objective,
the following analysis questions are derived:

Reliability

AQ1: Is there evidence of internal consistency of the
CodeMaster rubric?

Construct Validity

AQ2: Is there evidence of convergent validity of the
CodeMaster rubric?

AQ3: How do underlying factors influence the responses on
the items of the CodeMaster rubric?

Data collection. In order to optimize the sample size, we
downloaded the publicly available and accessible apps from the
App Inventor Gallery in June 2018. As a result, we obtained the
source-code from 88,864 App Inventor apps. We analyzed these
projects using the CodeMaster tool. Out of the 88,864
downloaded projects, 88,812 were successfully analyzed. 52
projects failed to be analyzed due to technical difficulties. The
collected data were pooled in a single sample in order to validate
the CodeMaster rubric (rather than a specific app).

Data analysis. In order to evaluate the reliability and
construct validity of the CodeMaster rubric, we used different
statistical methods. As reliability refers to the degree of
consistency or stability of the instrument criteria on the same
quality factor, we estimate internal consistency calculating
Cronbach's alpha coefficient [37] in order to evaluate the
consistency of results across criteria within a measurement
instrument. Construct validity is defined as the instrument’s
ability to actually measure what it purports to measure,

involving convergent validity obtained through the degree of
correlation between the instrument criteria [33]. We also
performed a factor analysis in order to determinate how many
factors underlie the set of items of the CodeMaster rubric,
conducting the analysis proposed by Brown [38]. This allows
identifying the amount to which each item is correlated with
each subdimension through the factor loading.

4. ANALYSIS

4.1 Is there evidence of internal consistency of
the CodeMaster rubric?

We analyzed reliability by measuring the internal consistency
of the CodeMaster rubric through Cronbach's alpha coefficient
[37]. Cronbach's alpha coefficient measures indirectly to what
extent a set of items measures a single quality factor. Thus, in
our case, whether the CodeMaster rubric measures the same
factor: the assessment of CT competencies related to algorithms
and programming concepts. Typically, values ranging from 0.70
to 0.95 are considered acceptable indicating internal consistency
(values between 0.7 < α ≤ 0.8 are acceptable, 0.8 < α ≤ 0.9 are
good, and α ≥ 0.9 are excellent) [39]. Analyzing the 15 items of
the CodeMaster rubric using the 88,812 App Inventor projects,
we obtained a satisfactory value of Cronbach's alpha (α=0.84).

4.1 Is there evidence of convergent validity of
the CodeMaster rubric?

In order to demonstrate convergent validity, we expect the
items of the rubric to have a medium or high correlation with all
other items [39]. We analyzed this question using the method of
corrected item-total correlation that compares one item to every
other one of the rubric. Following Cohen [40], a correlation is
considered satisfactory if the correlation coefficient is greater
than 0.29. We also analyze the value of Cronbach's alpha if an
item was deleted, expecting no substantial increase [39]. The
values of the item-total correlation and the values of Cronbach’s
alpha [37] deleting the respective item are presented in Table 2.

Table 2. Results of the analysis of the item-total
correlation with 88,812 App Inventor projects

CRITERION (OR ITEM) ITEM-TOTAL CORRELATION CRONBACH ALPHA
1. Operators 0.694 0.82
2. Variables 0.686 0.82
3. Strings 0.583 0.83
4. Naming 0.585 0.82
5. Lists 0.364 0.84
6. Data persistence 0.325 0.84
7. Events 0.596 0.82
8. Loops 0.286 0.84
9. Conditional 0.618 0.82
10. Synchronization 0.562 0.83
11. Procedural Abstraction 0.548 0.83
12. Sensors 0.448 0.84
13. Drawing and Animation 0.376 0.84
14. Maps 0.015 0.85
15. Screens 0.324 0.84

Paper Session: Rubrics and Evaluation SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

559

Most values of the item-total correlations are above 0.29,
demonstrating an acceptable internal consistency. The degree of
correlation between items indicates that the items measure the
same dimension, thus, demonstrating convergent and
discriminant validity.

Only item 14 (Maps) demonstrates a low correlation, which
can be explained by the fact that maps are a resource that has
been recently added to App Inventor in 2018, and, thus, may be
underrepresented in our dataset. Item 8 (Loops) shows a
correlation of 0.28, very close to the expected minimum value
(0.29). This may be due to the fact that loop commands are not
widely used in App Inventor programs [34][41]. All other items
show a decrease in Cronbach's alpha value if removed and
demonstrate sufficient item-total correlation, indicating the
validity of the rubric.

4.2 How do underlying factors influence the
responses on the items of the CodeMaster
rubric?

We performed a factor analysis in order to identify the
number of underlying factors that influence the items of the
CodeMaster rubric. We assume that the rubric is influenced by
two factors: algorithms and programming concepts and mobile
concepts, both related to CT.

In order to check the possibility to perform a factor analysis,
we used the Kaiser-Meyer-Olkin (KMO) index [38]. It measures
the sampling adequacy with values between 0 and 1. A value
near 1.0 supports a factor analysis and anything less than 0.5 is
not likely suitable for useful factor analysis [38]. Analyzing the
items of the CodeMaster rubric, we obtained a KMO index of
0.83, demonstrating that factor analysis is suitable in this case.

The number of factors retained is decided by applying factor
analysis [42]. We used parallel analysis, a method for
determining the number of components or factors to retain in
which factors with eigenvalues greater than 1 may be significant.
Conducting the parallel analysis, results show that there is one
preponderant factor, however, by showing 3 eigenvalues above
the red line, the scree plot suggests that there may be 3
underlying factors (Figure 3).

Figure 3: Parallel analysis scree plots of the CodeMaster
rubric

Thus, in order to decide which items are loaded in each
factor, we use the Oblimin rotation method, in which the factors
are allowed to be correlated [43]. Table 3 shows the factor
loadings of the items for each of the 3 retained factors. Based on
Comrey and Lee [44], we use more stringent cut-offs from 0.32
(poor), 0.45 (acceptable), 0.55 (good), 0.63 (very good), or 0.71
(excellent). Thus, good factor loadings (above 0.55) are marked in
bold in Table 3.

Table 3. Factor loadings for 3 factors

CRITERION (OR ITEM) FACTOR 1 FACTOR 2 FACTOR 3
1. Operators 0,325 0,074 0,795
2. Variables 0,453 0,337 0,763
3. Strings -0,028 -0,100 0,801
4. Naming 0,198 0,174 0,659
5. Lists -0,070 0,123 0,690
6. Data persistence -0,093 -0,156 0,786
7. Events 0,178 -0,157 0,868
8. Loops -0,004 0,209 0,768
9. Conditional 0,150 0,048 0,807
10. Synchronization 0,710 -0,336 0,616
11. Procedural Abstraction 0,406 0,241 0,779
12. Sensors 0,713 -0,432 0,453
13. Drawing and Animation 0,752 0,298 0,351
14. Maps -0,123 -0,389 0,403
15. Screens -0,158 -0,339 0,702

Analyzing the factor loadings (Table 3), factor 1 seems to be
more related to mobile concepts from App Inventor, grouping
item 12 (Sensors) and item 13 (Drawing and Animation) in this
factor. In addition, item 10 (Synchronization) also presents a
high factor loading in this first factor. However, it also has a
high factor loading in the third factor.

Factor 2 presents poor factor loadings for all items. No item
demonstrates a factor loading above 0.45, indicating that there is
no such factor.

Factor 3 is more related to algorithms and programming
concepts related to CT practices as defined by the CSTA [2].
Most of the items of the CodeMaster rubric have a high factor
loading in this third factor. Item 14 (Maps), semantically more
related to the first factor, presents its largest factor loading in the
third factor. However, as this item is related to a resource added
to App Inventor in 2018, it may be underrepresented in our
dataset in which only 0,08% projects (72 out of 88,812 projects)
use this feature, this may have generated noise in the
calculation. As a result, the factor loadings confirm that the
model has only two subdimensions as originally proposed in
table 1 (algorithms and programming concepts and mobile
concepts).

Aiming ultimately at assessing CT, it is important to
determine how much the items are loading into one single
factor. Table 4 shows the factor loadings of the items with
respect to one single factor. Most of the items present value
above the threshold of 0.55. Only item 14 (Maps) has a low factor
loading, which again can be explained by the possibility of this
item being underrepresented in our dataset.

Paper Session: Rubrics and Evaluation SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

560

Table 4. Factor loadings for one single factor

CRITERIA (OR ITEM) FACTOR LOADING
1. Operators 0.875
2. Variables 0.868
3. Strings 0.697
4. Naming 0.703
5. Lists 0.590
6. Data persistence 0.679
7. Events 0.860
8. Loops 0.721
9. Conditional 0.807
10. Synchronization 0.855
11. Procedural Abstraction 0.882
12. Sensors 0.669
13. Drawing and Animation 0.614
14. Maps 0.262
15. Screens 0.574

5. IMPLICATIONS AND LIMITATIONS

The obtained results, in general, indicate good reliability and
construct validity of the CodeMaster rubric for the assessment of
CT competencies related to algorithms and programming
concepts and mobile concepts. Unsatisfactory results regarding
item 14 (Maps) may be due to its underrepresentation in the
dataset. All other items presented good results with respect to
both, reliability and validity.

In addition, the items also present consistent results related to
the underlying factors of the rubric, and the factor analysis
shows that the items have high factor loadings in two
subdimensions, as originally proposed. However, item 15
(Screens) demonstrated a bigger factor loading on algorithms
and programming concepts instead of mobile concepts. This
could be due to the definition of this item, which is related to
“the app state changing programmatically” as presented in Table
1. Thus, for this change happen, it is required that the app
contains many algorithms and programming concepts in order
to provide screen change to the user.

One item presents high factor loading in both factors. Item 10
(Synchronization) seems to be related to algorithms and
programming concepts as defined by the CSTA [2] as well as to
mobile concepts from App Inventor. As a result, we can conclude
an assessment model composed of two sub-dimensions as shown
in Figure 4.

Figure 4: CodeMaster rubric items grouped based on the
results of the factor analysis

In general, the results of the analysis show that the
CodeMaster rubric represents a reliable instrument and, with the
exception of the Maps item, also demonstrates a good
correlation. This indicates that the rubric can be used for a valid
assessment of algorithms and programming concepts based on a
code analysis of App Inventor programs. Yet, it is important to
point out that the rubric represents only one alternative for
measuring these dimensions of CT, and a more comprehensive
assessment should be completed by other assessment methods,
such as interviews, peer reviews, presentations, etc. as suggested
by Brennan and Resnick [15] and Grover and Pea [35].

Threats to validity. In order to minimize the impact on our
research, we identified potential threats and applied mitigation
strategies. In order to mitigate threats related to the study
design, we adopted a systematic methodology following the
GQM approach [36]. Another issue refers to the quality of data
pooled into a single sample considering the standardization of
the data. As our study is limited to assessments using the
CodeMaster tool, this risk is minimized as all analyses were
performed in an automated way using the same rubric. Another
risk is the pooling of data from various contexts. The apps of the
dataset come from diverse contexts from the App Inventor
community worldwide and no further information on the
background of the creators is available. However, as the
objective is to analyze the validity of the rubric in a context-
independent way, this is not considered an issue here. Another
threat to external validity is associated with the sample size and
diversity of the data used. Our analysis is based on projects
collected from the App Inventor Gallery, involving a sample of
88,812 apps from the App Inventor community worldwide. This
is considered a satisfactory sample size that allows the
generation of significant results. Another issue refers to which
the extent the data and analysis are influenced by the
researchers. In order to mitigate this threat, we adopted a
systematic methodology, defining clearly the study objective, the
data collection, and statistical analysis. We also carefully selected
the statistical methods following the approach proposed by
DeVellis [39] for the construction of measurement scales in
alignment with procedures for the analysis of internal
consistency and construct validity of measurement instruments
[45].

6. CONCLUSION

In general, the results of this large-scale evaluation show that
the CodeMaster rubric represents an instrument with acceptable
reliability and validity that can be used for the assessment of
algorithms and programming concepts of App Inventor
applications as part of computing education in schools.
Supported through the online tool CodeMaster, it further
provides automated support that helps to ensure consistency and
accuracy of assessment results as well as to eliminate bias.
Furthermore, it can also reduce the teachers' workload and
leaving them free to spend more time on other activities with
students as well as to conduct complementary assessments on
factors that are not easily automated, such as creativity.

Paper Session: Rubrics and Evaluation SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

561

ACKNOWLEDGMENTS
We would like to thank all researchers from the MIT App
Inventor team, who provided support for the access to the App
Inventor Gallery. The authors would also like to thank the
anonymous referees for their valuable comments and helpful
suggestions. This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001 and by the Conselho Nacional de
Desenvolvimento Científico e Tecnológico - Brasil (CNPq) -
Grant No.: 302149/2016-3.

REFERENCES
[1] J. Wing. 2006. Computational Thinking. Communications of the ACM. 49(3),

33-36.
[2] Computer Science Teachers Association. 2016. K-12 Computer Science

Framework. Retrieved August 09, 2019 from https://k12cs.org/
[3] S. Grover, and R. Pea. 2013. Computational Thinking in K–12: A review of the

state of the field. Educational Researcher, 42(1), 38-43.
[4] Y. Kafai, and Q. Burke. 2013. Computer programming goes back to school.

Phi Deltan Kappan, 95(1), 61–65.
[5] S. Y. Lye and J. H. L Koh. 2014. Review on teaching and learning of

computational thinking through programming: What is next for K-12?.
Computers in Human Behavior, 41(C), 51–61.

[6] D. Reed. 2002. The use of ill-defined problems for developing problem-solving
and empirical skills in CS1. Journal of Computing Sciences in Colleges, 18(1),
121-133.

[7] D. Fortus, R. C. Dershimer, J. S. Krajcik, R. W. Marx, R. Mamlok-Naaman.
2004. Design-based science and student learning. Journal of Research in
Science Teaching, 41(10), 1081–1110.

[8] S. B. Fee, and A. M. Holland-Minkley. 2010. Teaching Computer Science
through Problems, not Solutions. Computer Science Education, 20(2), 129-
144.

[9] J. Hattie, and H. Timperley. 2007. The power of feedback. Review of
Educational Research, 77(1), 81-112.

[10] V. J. Shute. 2008. Focus on formative feedback. Review of Educational
Research, 78(1), 153-189.

[11] P. Black, and D. Wiliam. 1998. Assessment and classroom learning.
Assessment in Education: Principles, Policy & Practice, 5(1), 7–74.

[12] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. 2010. Review of recent
systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli Calling ’10). ACM, NY, USA, 86–93.

[13] S. Grover, S. Cooper, and R. Pea. 2014. Assessing Computational Learning in
K-12. In Proceedings of the 2014 conference on Innovation & technology in
computer science education (ITiCSE '14). ACM, NY, USA, 57-62.

[14] N. da C. Alves, C. Gresse von Wangenheim, and J. C. R. Hauck. 2019.
Approaches to assess computational thinking competences based on code
analysis in K-12 education: A systematic mapping study. Informatics in
Education, 18(1), 17-39.

[15] K. Brennan and M. Resnick. 2012. New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the
Annual Meeting of the American Educational Research Association

[16] S. Grover. 2017. Assessing Algorithmic and Computational Thinking in K-12:
Lessons from a Middle School Classroom. In: Rich P., Hodges C. (eds)
Emerging Research, Practice, and Policy on Computational Thinking.
Educational Communications and Technology: Issues and Innovations.
Springer, Cham.

[17] A. Yadav, D. Burkhart, D. Moix, E. Snow, P. Bandaru, and L. Clayborn. 2015.
Sowing the Seeds: A Landscape Study on Assessment in Secondary Computer
Science Education. In Proceedings of the CSTA Annual Conference.

[18] H. Torrance. 1995. Evaluating authentic assessment: Problems and
possibilities in new approaches to assessment. Buckingham: Open Uni. Press.

[19] J. D. Ward and C. L. Lee. 2002. A review of problem-based learning. Journal
of Family and Consumer Sciences Education, 20(1), 16-26.

[20] G. P. Wiggins. 1993. Assessing student performance: Exploring the purpose
and limits of testing. In The Jossey-Bass education series. San Francisco:
Jossey-Bass.

[21] A. Driscoll and S. Wood. 2007. Developing Outcomes-Based Assessment for
Learner Centered Education: a Faculty Introduction. Sterling: Stylus
Publishing.

[22] R. McCauley. 2003. Rubrics as assessment guides. SIGCSE Bull. 35(4)
(December 2003), 17-18.

[23] S. Srikant and V. Aggarwal. 2013. Automatic Grading of Computer Programs:
A Machine Learning Approach. In Proceedings of the 2013 12th International
Conference on Machine Learning and Applications - Volume 01 (ICMLA '13),
Vol. 1. IEEE Computer Society, Washington, DC, USA, 85-92.

[24] M. Sherman and F. Martin. 2015. The assessment of mobile computational
thinking. Journal of Computing Sciences in Colleges, 30(6), 53–59.

[25] J. Moreno-León and G. Robles. 2015. Dr. Scratch: a Web Tool to
Automatically Evaluate Scratch Projects. In Proceedings of the Workshop in
Primary and Secondary Computing Education (WiPSCE '15). ACM, NY, USA,
132-133.

[26] G. Ota, Y. Morimoto and H. Kato. 2016. Ninja code village for scratch:
Function samples/function analyser and automatic assessment of
computational thinking concepts. In 2016 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pp. 238-239.

[27] S. Grover, S. Basu, and P. Schank. 2018. What We Can Learn About Student
Learning From Open-Ended Programming Projects in Middle School
Computer Science. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE '18). ACM, NY, USA, 999-1004.

[28] Satabdi Basu. 2019. Using Rubrics Integrating Design and Coding to Assess
Middle School Students' Open-ended Block-based Programming Projects. In
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE '19). ACM, NY, USA, 1211-1217.

[29] M. Sherman, F. Martin, L. Baldwin, J. DeFilippo. 2014. App Inventor Project
Rubric – Computational Thinking through Mobile Computing. Retrieved July
06, 2019 from https://nsfmobilect.files.wordpress.com/2014/09/mobile-ct-
rubric-for-app-inventor-2014-09-01.pdf

[30] R. M. Branch. 2010. Instructional Design: The ADDIE Approach. New York:
Springer.

[31] H. Goodrich. 1996. Understanding Rubrics. Educational Leadership, 54(4), 14–
18.

[32] C. Gresse von Wangenheim, J. C. R. Hauck, M. F. Demetrio, R. Pelle, N. da C.
Alves, H. Barbosa, L. F. Azevedo. 2018. CodeMaster – Automatic Assessment
and Grading of App Inventor and Snap! Programs. Informatics in Education,
17(1), 117-150.

[33] E. G. Carmines and R. A. Zeller. 1982. Reliability and validity assessment (5th
ed.). Beverly Hills: Sage Publications Inc.

[34] F. Turbak, M. Sherman, F. Martin, D. Wolber, and S. C. Pokress. 2014. Events-
first programming in APP inventor. Journal of Computing Sciences in
Colleges, 29(6), 81-89.

[35] S. Grover, & R. Pea. 2015. “Systems of Assessments" for Deeper Learning of
Computational Thinking in K-12. In Proceedings of the Annual Meeting of
the American Educational Research Association.

[36] V. R. Basili, G. Caldiera, H. D. Rombach. 1994. The Goal Question Metric
Approach. In Encyclopedia of Software Engineering, Wiley.

[37] L. J. Cronbach. 1951. Coefficient alpha and the internal structure of tests.
Psychometrika, 16(3), 297–334.

[38] T. A. Brown. 2006. Confirmatory factor analysis for applied research. New
York: The Guilford Press.

[39] R. F. DeVellis. 2003. Scale development: theory and applications. Thousand
Oaks: SAGE Publications.

[40] Cohen, J. 1998. Statistical Power Analysis for the Behavioral Sciences. New
York: Routledge Academic.

[41] B. Xie and H. Abelson. 2016. Skill progression in MIT App Inventor.
Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (pp. 213–217).

[42] L. W. Glorfeld. 1995. An improvement on Horn’s parallel analysis
methodology for selecting the correct number of factors to retain.
Educational and Psychological Measurement, 55(3), 377-393.

[43] J. E. Jackson. 2014. Oblimin Rotation. In Wiley StatsRef: Statistics Reference
Online (eds N. Balakrishnan et al.).

[44] A. L. Comrey and H. B. Lee. 1992. A first course in factor analysis (2nd ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates.

[45] W. M. Trochim and J. P. Donnelly. 2008. Research methods knowledge base
(3rd ed.). Mason, OH: Atomic Dog Publishing.

Paper Session: Rubrics and Evaluation SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

562

https://k12cs.org/
https://nsfmobilect.files.wordpress.com/2014/09/mobile-ct-rubric-for-app-inventor-2014-09-01.pdf
https://nsfmobilect.files.wordpress.com/2014/09/mobile-ct-rubric-for-app-inventor-2014-09-01.pdf

